Search results for " rejection sampling"

showing 2 items of 2 documents

Exact simulation of diffusion first exit times: algorithm acceleration

2020

In order to describe or estimate different quantities related to a specific random variable, it is of prime interest to numerically generate such a variate. In specific situations, the exact generation of random variables might be either momentarily unavailable or too expensive in terms of computation time. It therefore needs to be replaced by an approximation procedure. As was previously the case, the ambitious exact simulation of exit times for diffusion processes was unreachable though it concerns many applications in different fields like mathematical finance, neuroscience or reliability. The usual way to describe exit times was to use discretization schemes, that are of course approxim…

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Probability (math.PR)primary 65C05 secondary:60G40 68W20 68T05 65C20 91A60 60J60diffusion processes[MATH] Mathematics [math]Exit timeExit time Brownian motion diffusion processes rejection sampling exact simulation multi-armed bandit randomized algorithm.randomized algorithm[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]exact simulationFOS: MathematicsBrownian motionmulti-armed banditMathematics - ProbabilityRejection sampling
researchProduct

Exact simulation of first exit times for one-dimensional diffusion processes

2019

International audience; The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability horizontal ellipsis The usual procedure is to use discretization schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study …

Girsanov theoremand phrases: Exit timeDiscretizationsecondary: 65N75Exit time Brownian motion diffusion processes Girsanov’s transformation rejection sampling exact simulation randomized algorithm conditioned Brownian motion.MSC 65C05 65N75 60G40Exit time01 natural sciencesGirsanov’s transformationrandomized algorithm010104 statistics & probabilityrejection samplingGirsanov's transformationexact simulationFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsConvergent seriesBrownian motion60G40MathematicsNumerical AnalysisApplied MathematicsMathematical financeRejection samplingProbability (math.PR)diffusion processesNumerical Analysis (math.NA)conditioned Brownian motionRandomized algorithm010101 applied mathematics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Computational MathematicsModeling and Simulationconditioned Brownian motion 2010 AMS subject classifications: primary 65C05Brownian motionRandom variableMathematics - ProbabilityAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct